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ABSTRACT

There are many metrics available for observing the dynam-
ical complexity of a signal, with multiple applications in
computer music. Previous work demonstrated that the Ef-
fort To Compress metric could be used to modulate the be-
haviour of a feedback instrument, however the algorithm is
challenging to run in realtime. This research explores the
many metrics available, and evaluates a selection of them
in their suitability for realtime signal processing in musi-
cal instruments. A new metric is proposed and evaluated:
Random Projection Complexity (RPC). The results show
that RPC has comparable performance to other complexity
metrics, and is suited to realtime applications. The results
also demonstrate viability of further complexity metrics for
interactive computer music systems.

1. INTRODUCTION

Dynamical complexity metrics can reveal valuable infor-
mation about time series, giving indications about struc-
ture, organisation and information content [1]. They can
show the amount of regularity, disorder or randomness, in
turn giving insights into the nature of the process(es) that
produced the time series. Complexity metrics potentially
have useful applications in instrument design, machine lis-
tening, sound processing, and sensor data processing but
are relatively underused in computer music; they are not
a common component of popular computer music toolk-
its, DAW plugins or DSP libraries. While they are already
popular for signal processing in physics, neuroscience and
physiological analysis, this practice has not yet transferred
to computer music.

One example of the use of realtime dynamical complexity
measurement in music is the CoFlo system [2]. It was de-
veloped to address challenges with the behaviour of feed-
back instruments, where the instruments move into satura-
tion too easily due to a build up of a dominant frequency.
CoFlo modulates the gain of the feedback instrument so
that it tends not to go into saturation, instead widening out
the zone before saturation, where the instrument feels most
lively. The algorithm does this using a dynamical complex-
ity metric, Effort To Compress (ETC) [3], which can detect
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when the system is moving towards saturation, and make
gain adjustments to reduce it. It is able to detect saturation
because the sound of a dominant feedback frequency has a
simple structure, compared to the more complex sound of
the instrument in an unsaturated state.

While CoFlo was shown to work effectively, there are
challenges around using ETC for realtime signal process-
ing. The ETC algorithm is computationally expensive, and
needs plenty of processing headroom due to jitter in the
time is takes to complete calculations. The algorithm can
use an entire CPU to analyse data at a relatively small win-
dow size, rendering it inflexible in use, and precluding its
applications in embedded computing within musical in-
struments. The CoFlo study did not test ETC against other
algorithms, raising the question of whether other dynami-
cal complexity metrics might also be effective in its place,
and what the different qualities of these metrics might be
for realtime signal processing?

A new dynamical complexity metric is proposed: Ran-
dom Projection Complexity (RPC). RPC is compared to
other metrics in two studies; one looking at RPC’s basic
ability for measuring dynamical complexity, and another
comparison study using simulated audio feedback systems,
similar to CoFlo. Finally, the realtime performance of RPC
is compared to other metrics.

2. MEASURING DYNAMICAL COMPLEXITY

We should begin by asking what complexity is, and what it
means in terms of sound? While there is no strict definition
of complexity [1], Lloyd [4] suggests that it relates to how
hard something might be to describe or create, and how
organised it is. Dynamical complexity relates how to com-
plexity of a system changes over time. There are multiple
methods available for measuring this; Lau et. al review
twenty different metrics, suggesting they can be divided
into those that quantify either predictability or regularity in
time series [5]. All of these metrics make an intuitive link
from an observable measurement towards some aspect of
complex dynamics.

This lack of a strict definition of complexity and diver-
sity of measures could be seen as problematic, however
different complexity metrics can be seen as ways of mea-
suring different aspects (and possibly interacting dimen-
sions [1]) of a system’s behaviour, and one can find em-
pirical evidence of dynamical complexity measurements
correlating with the behaviour of realworld phenomena.
They are used across multiple sciences as indicators of,
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among many other examples, levels of consciousness [6],
cardiac health [7], stock market inefficiency [8], or ecosys-
tem health (via soundscape analysis) [9].

In computer music, spectral entropy, a measure of fre-
quency domain complexity, is used in machine listening
(e.g. [10]), but there is little example of other metrics in
use, especially in realtime interactive systems. Looking
to their application in other fields, complexity metrics are
broadly used for high-level description of system behaviour;
this could have many applications in computer music, and
as we have already seen, this approach has been effective in
monitoring the state of feedback instruments with CoFlo.
This leads back to the questions raised earlier; ETC was
effective in observing a state of saturation in a feedback
system, but also problematic to use in an interactive sys-
tem because of computational demands. A new metric,
Random Projection Complexity, which addresses these re-
altime challenges, will now be evaluated.

3. RANDOM PROJECTION COMPLEXITY

RPC is a form of compression-complexity metric (CCM).
This family of metrics equates the compressibility of data
to its complexity. Intuitively, simple data is easily com-
pressible. Data with more complex and varied structures
will be more challenging to compress, and at the highest
end of the scale, noise will be very difficult to compress be-
cause it lacks regular patterns. ETC and Lempel-Ziv (LZ)
metrics both use lossless compression algorithms to quan-
tify complexity [3]. RPC uses random projection (RP), a
technique that can be used for lossy compression, to mea-
sure complexity with improved realtime performance com-
pared to ETC and LZ, at the cost of some random vari-
ance in the measurements. RP is founded on the Johnson-
Lindenstrauss lemma [11], which states that points in a
high-dimensional space Rh are likely to retain a similar
distance from each other when projected into a lower di-
mensional space Rl. With RP, data is projected into a
lower-dimensional space using a matrix P with randomly
generated coefficients. When coefficients are drawn from a
Gaussian distribution, point-to-point distance is more likely
to be preserved. The lower-dimensional projection is a
compressed representation of the high-dimensional data,
which can be approximately restored using an inversion of
the projection matrix. RP is used in a range of applications
including nearest neighbour search of audio features [12]
and classification [13].

The RPC algorithm [14] takes five inputs: a time series w
of length n, a window size h which is also the size of the
higher dimensional space to project from, the size of the
lower dimensional space l, a hop size α and histogram res-
olution β. The algorithm works in two stages; the first is
projection. A Gaussian projection matrix Pw×l is gener-
ated, and a sliding window is moved across w. The results
of projections from these windows into the lower dimen-
sional space Rh → Rl are collected. The number of hops
λ of the sliding window is calculated in equation 1. In
equation 2, the projections are collected into matrix Ql×λ.
wa:b indicates a slice of vector w for indexes in [a, b).

λ = floor((n− w)/α) + 1 (1)

Q = [Pw0:w, Pwα:w+α . . . Pwλα:w+λα] (2)

The second stage in the calculation is histogramming.
The rows in Q are rescaled individually between 0 and 1
(equation 3), and then the points on each column are col-
lected into a multidimensional histogram H , with β bins
in each dimension.

Qi = (Qi −min(Qi))/max(Qi) (3)

The value of RPC is calculated as the number of nonzero
bins in H (equation 4).

RPC = count(H > 0) (4)

The RPC metric works on the intuition that time series
with simple structure will have repeating patterns that project
onto the same areas of the histogram, thereby occupying
less of its area. Time series with more complex and varied
structure will project onto a larger area of the histogram.
This is similar to the intuition behind other CCMs described
earlier. An example of this is shown with projections of
the time series in figure 1; a sinewave with simple struc-
ture, a simulated cardiac ECG signal (generated with Neu-
rokit [15]), and white noise.

0 2000 4000 6000 8000 10000
time (samples)

1.0

0.5

0.0

0.5

1.0

am
pl

itu
de

Noise
ECG
Sine

Figure 1. Time series for the demonstration of random pro-
jection: sine, simulated ECG, white noise

Figure 2 shows the nonzero bins in histograms of these
waveforms, with parameters h = 16, l = 2, β = 20. Ta-
ble 1 shows the value of RPC, calculated from these his-
tograms. The ordering of the results is in line with other
CCMs: noise has the highest score, and the ECG wave-
form, with its more varied structure, has a higher score than
the sine wave.

Sine ECG Noise

Figure 2. Sine, ECG and noise time series projected into
two-dimensional histograms



Sine ECG Noise
RPC 69 91 212

Table 1. RPC of time series

4. STUDY 1: COMPARISON WITH OTHER
COMPLEXITY METRICS

This study compares RPC with other complexity metrics.
A comparison to all other popular metrics is beyond scope,
so a selection of metrics were chosen as follows:

ETC, LZ Two metrics using lossless compression, from
the family of CCMs.

SE Shannon Entropy [16], a popular and widely used entropy-
based metric

MSE Multiscale Entropy [17], a metric that addresses some
limitations of SE

SFD Sevcik Fractal Dimension [18], a metric optimised
for time series analysis

The intention of this study is not to question whether RPC
is significantly different to these other metrics, but to ques-
tion its efficacy in providing a similar quality of results.

4.1 Method

Following from Nagaraj and Balasubramanian’s compari-
son of CCMs [3], the logistic map (equation 5) was cho-
sen as a means for comparison. The logistic map produces
time series that vary from periodic to chaotic behaviour as
the bifurcation parameter r varies between 3.5 and 4. The
Lyapunov exponent [19] λ is an excellent baseline measure
of the complexity of the logistic map, because its calcula-
tion can be directly derived from its equation.

xn+1 = rxn(1− xn) (5)

Logistic maps were produced, with length 400, and with
r in range [3.5, 4] at intervals of 0.0005. The 6 metrics
were calculated for each map, along with Lypunov expo-
nents. SE, ETC and LZ require symbolic input, so for these
metrics the time series were discretised using 256 equally
spaced bins, to give a clear representation of the original
signal. RPC was manually tuned to obtain a representative
result, with h = 16, l = 4, α = 4, β = 6. MSE requires
a dimensionality parameter, this was calculated using the
correlation dimension method.

4.2 Results

Metric RPC ETC LZ MSE SE SFD
PCC 0.892 0.910 0.911 0.759 0.891 -0.749

Table 2. Correlation coefficients for complexity metrics
with λ

The results for each metric were normalised and plotted
in figure 3. The plot shows that RPC offers similar re-
sults to ETC, LZ and SE. This result is confirmed by table
2, which shows how these results correlate with λ, using
Pearson’s correlation coefficient (PCC).

5. STUDY 2: SATURATION IN FEEDBACK
SYSTEMS

Following from the CoFlo study, where ETC was found
to be a good indicator of saturated states in feedback in-
struments, are RPC and the other metrics tested in section
4 good alternatives? And how do their qualities differ in
this task? Study 2 explores these questions, using software
feedback systems.

5.1 Method

The CoFlo study was a qualitative investigation of com-
plexity analysis on feedback cellos and a halldorophone.
In order to be able to effectively compare metrics in a sim-
ilar task, a more controllable feedback instrument would be
advantageous; for this reason, a software feedback system
was used. This system was programmed in SuperCollider.
It is inspired by the feedback cello, using a set of phys-
ically modelled bowed strings (using digital waveguides)
which are passed through a physically modelled sound-
board. The output signal is fed back through the sound-
board along with the signals from the strings. This patch
has a similar behaviour to the feedback cello in that, when
left undisturbed, the feedback will slowly dominate the
system, moving it into a stage of saturation, with a single
dominant frequency. ETC could successfully detect this
state of saturation, but can these other metrics achieve this
too?

Fifteen recordings of the feedback system were collected,
with the feedback gain manually tuned in each case to
that the system moved from an initial unsaturated state
into complete saturation over the course of roughly 15 sec-
onds. In each recording, the frequencies of the strings
were altered, to create a varied dataset for analysis. The
first five recordings were at single frequencies, at 60Hz,
120Hz, 240Hz, 480Hz and 960Hz. The next 5 were major
and minor chords at different pitches. The final five had 6
strings at randomly chosen pitches between MIDI notes 0
and 70, resulting in inharmonic pitch combinations. These
pitches are noted in the accompanying source code [20],
along with the SuperCollider code.

The recordings were manually annotated by the author,
to mark three salient points:

P0 the moment when feedback becomes audible

P1 the point at which the saturation begins to sound louder
than the original sound

P2 when the saturation dominates the system and over-
rides all other sound.

Automatic gain control would need to activate somewhere
between P0 and P1, and reduce the system gain to prevent



3.5 3.6 3.7 3.8 3.9 4.0
r

4

2

0

2

4
am

pl
itu

de

ETC
LZ
MSE
SE
SFD
RPC

Figure 3. Comparison of complexity metrics measuring the logistic map at varying values of r
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Figure 4. Example spectrogram for a feedback system
recording, showing the system moving into saturation

saturation. It is acknowledged that this annotation from a
single researcher is subjective, and the results are consid-
ered in the light of this. Figure 4 shows an example of a
recording, where the system moves slowly into saturation
with a dominant frequency around 512Hz.

Each recording was analysed with the set of metrics. RPC
was configured in four variations (see table 3), to reveal
how it might be affected by different parameterisations.
The configurations were chosen to cover a range of pro-
jection dimensions and histogram resolutions.

Configuration h l α β
RPC0 32 1 16 100
RPC1 16 4 8 10
RPC2 64 7 32 3
RPC3 64 7 64 3

Table 3. Configurations of RPC metric used in study 2

The metrics were run on overlapping windows of data,
based on the approach that a realtime complexity analysis
system like CoFlo takes. The windows were 1000 samples
wide, with a 500 sample hop size. This resulted in a time

series of complexity measurements from each metric, for
each of the 15 recordings of the feedback system.
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Figure 5. An example of the regions of interest and anno-
tation points in a time series of complexity measurements
of a feedback system moving into saturation (using RPC1)

To assess whether the metrics could differentiate between
unsaturated and saturated sound, one second windows were
identified in each time series, from regions of interest (ROIs):
[A] a window from the beginning of the sample, repre-
senting unsaturated sound, and starting from 0.5s to give
the feedback system some time to settle; windows [B, C
and D] follow annotation points P1-3. Distances between
the data in these ROIs were measured, to give an indica-
tion of difference in the measurements of saturated and un-
saturated states. Dynamic Time Warping, which has been
demonstrated as an effective metric for similarity between
time series [21], was used to measure distance. Four dis-
tance measurements were made between the ROIs: AB, as
a measure of being able to detect the early onset of satura-
tion; AC, to identify when saturation becomes dominant;
BC indicates the difference between early onset and dom-
inant saturation, and CD is the difference between dom-
inant and complete saturation. Figure 5 demonstrates an



example of these annotations and ROIs, using an output
from metric RPC1. Due to differences in scale between
metrics, all time series were standardised to unit variance
and zero mean before distances were calculated.

5.2 Results

Figure 6 shows the results. A higher distance indicates that
metric would be better at differentiating between the ROIs.
All metrics score well for CD. Interestingly, MSE and
SFD, which were outperformed by other metrics in study
1, both perform very well, including good results for the
distance AB, which identifies the early onset of feedback.
RPC0 offers intruiging results; it shows low scores with
little variance, although the mean is higher than LZ and
SE. This lower quality could be due to the configuration of
projection into a single dimension (l = 1). RPC1, RPC2
and RPC3 show higher average scores for tests AB,BC
and AC then LZ and SE, with RPC1 and RPC2 also scor-
ing higher than ETC. RPC3 was configured identically to
RPC2 except for having a larger hop size. In this case, the
effect was to reduce the quality of the measurements. It
is acknowledged that the subjective annotations may cre-
ate some variance in these results, but given that all met-
rics were calculated on the same data, the results show that
RPC can be configured to perform at a similar level to other
standard complexity metrics.

6. STUDY 3: PERFORMANCE BENCHMARKS

Study 2 demonstrates that all of the tested metrics were
able to detect saturation in the simulated feedback system.
Which of them are most suited to realtime use in musical
instruments? It’s clear from examination of the algorithm
that MSE will struggle in a realtime system due to compu-
tational complexity, and it’s known that ETC suffers form
performance issues, but the other algorithms might work
well. An algorithm that runs well in realtime might have
low CPU demands, and low jitter, i.e. it takes a similar time
to run on each window of data. It might also run with low
memory overhead (this would be advantageous for running
on microcontrollers) and might be able to take advantage
of parallelisation.

6.1 Method

All algorithms were programmed in C++, in what the au-
thor considers to be optimal implementations. The test pro-
gram used compiler optimisation at the O3 level. Eigen li-
brary [22], known for high-performance, was used for all
linear algebra functions. Source code is provided at [14].
MSE, due to expected low performance, was not tested.
ETC was kept as a reference comparison to CoFlo. The
same configurations for RPC as study 2 were used. The
study measured runtime speed, but did not test memory
use.

A recording of a jungle soundscape was chosen as the
source data for analysis, selected for variation and com-
plexity in the structure of the sound. For each trial, the met-
rics cycled through 500 sample windows of this data. All
trails ran over 1000000 iterations, except for ETC which

was significantly slower, and was run over 100000 itera-
tions instead. The time taken for each analysis was recorded
with a high resolution timer using the C++ clock() func-
tion. Tests were run on a Dell XPS 7590, with a 2.4GHz
Intel i9 CPU and 32GB RAM, running Ubuntu 22.04.

6.2 Results

Table 4 shows the benchmark results, with the median time
in milliseconds that the metrics took to analyse 500 sample
windows of audio data. ETC, as predicted, is very slow in
comparison to the RPC metrics and SFD. The fastest met-
rics are roughly 7300× faster than ETC at this window size
(although ETC’s speed would improve for smaller win-
dows), and would be approximately 5500× faster than re-
altime for processing 44.1kHz audio. SFDs speed is due
to its simplicity of calculation. RPC has a slightly more
involved algorithm, but is able to take advantage of hard-
ware optimisations for parallel vector processing that are
present in many CPUs. LZ and SE are slightly slower, but
still easily fast enough for realtime audio processing.

7. RPC IN USE

RPC was implemented as a SuperCollider UGen, and tri-
aled in a CoFlo style scenario, to prevent the software feed-
back system from study 2 from going into saturation. The
system was modified so that RPC analysed the audio in
the feedback loop, using the same configuration as RPC1.
When the output of the RPC analyser dropped below a
threshold, the feedback gain was reduced proportionally to
stabilise the loop. This approach worked successfully. Fig-
ure 7 shows a spectrogram example of a recording; the sys-
tem does not approach saturation. At around 20s, a feed-
back frequency starts to emerge near 256Hz, but it is sup-
pressed by gain modulation. The synth ran without issue
in realtime.

8. CONCLUSIONS

Random Projection Complexity is a new metric in the fam-
ily of complexity-compression metrics, that takes the ap-
proach of lossy compression, to gain speed at the cost of
some random variance in the results. It was developed as
a potential solution to the challenges of realtime perfor-
mance for ETC in CoFlo, a system for modulating the be-
haviour of feedback instruments. Two studies demonstrate
that RPC has comparable results to other existing complex-
ity metrics, and that it can respond to saturating feedback
in a software instrument, also demonstrated in practice in
section 7. Performance benchmarking reveals that RPC
can be tuned to run with excellent realtime performance.
These factors position it as a convincing replacement for
ETC in CoFlo.

The studies reveal some challenges with RPC. Firstly, due
to the nature of random projection, there will be variance
in how data appears in the low dimensional space, but it’s
not yet clear as to how much variance there is, and how
this contributes towards the quality of the results. RPC
has more parameters that the other metrics; ETC, LZ and



RPC0 RPC1 RPC2 RPC3 LZ SE ETC MSE SFD
Metric

0.0

0.5

1.0

1.5

2.0
DT

W
 D

ist
an

ce

Test
AB
BC
AC
CD

Figure 6. Study 2 results, showing difference in measurements of ROIs with varying states of saturating feedback

RPC0 RPC1 RPC2 RPC3 LZ SFD SE ETC
Median (ms) 0.002 0.008 0.004 0.002 0.068 0.002 0.015 14.742
Std 0.001977 0.001658 0.001195 0.000997 0.009068 0.000758 0.001841 0.409827

Table 4. Benchmark Results
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Figure 7. A spectrogram of a recording of a software feed-
back system, with RPC preventing the system moving into
a saturated state

SE work with symbolic data and require a single choice
of how the data is discretised; RPC in contrast has four
parameters, which simultaneously affect both quality and
performance. This means that some experimentation is re-
quired to tune RPC to a particular tasks, but also means that
RPC can be flexible to balance quality and performance in
different settings. The last challenge with RPC is to find a
technique for normalisation of the output; the metric scales
nonlinearly with the combination of h, l, and β.

The studies also offer insights into the behaviour of other
complexity metrics that were tested. MSE worked fairly
well with the logistic map and very well in the feedback
detection task, however it’s too computationally expensive
for realtime applications. LZ and SE seemed to perform
well across all studies, although LZ runs more slowly com-
pared to the fastest metrics. SFD is intruiging; despite
a negative result for the logistic map, it performed very

well in study 3 and also exhibits excellent realtime perfor-
mance.

This variance across the metrics helps to reinforce the
idea that there is no correct choice of complexity measure-
ment, the metric needs to be chosen to suit a particular con-
text. These metrics offer the potential to give insights into
the meta-behaviour of audio systems, and many of them
are able to run in realtime, offering interesting potential in
musical instrument design and computer music. RPC adds
a new option to the selection of metrics available to com-
puter musicians.
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